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Synopsis

A synthetic account is given of a general treatment of large quantal systems, allowing of a 
clear-cut characterization of the macroscopic level of description of such systems. The time-evolu­
tion of the density operator is given by a Liouville equation, which is written down in a superspace 
formed by the direct product of the Hilbert space with itself. It is shown how to construct a 
projector II in this superspace such that the subspace it defines contains the asymptotic time­
evolution of the density operator for time intervals very large compared with those typical for 
atomic processes: this asymptotic subdynamics shows the characteristic features of macroscopic 
behaviour.

A quantitative critérium is formulated in superspace for the existence of a well-defined and 
unique macroscopic level in the sense just outlined of a separate subdynamics governing the 
asymptotic behaviour of the system. This “condition of dissipativity” can be directly tested on 
the Hamiltonian of any given system.

In general, the subdynamics can only be formulated in superspace: it is not possible to 
return from the II subspace to a Hilbert space description of the system in terms of state-vectors. 
Thus, the scope of the latter description is clearly limited, and a precise formulation is obtained 
of the complementarity between the dynamical account of the system on the atomic scale and 
its description at the level of macroscopic observation.

The epistemological problems of quantum mechanics receive from the present point of view 
an especially transparent treatment. In particular, the consistency of the use of classical concepts 
for the account of quantal phenomena is obvious, since the macroscopic description operates 
directly with probabilities, all quantal interference effects being eliminated from the II sub­
space; thus, the rule of “reduction” of the state-vector following a measurement performed 
upon an atomic system appears as an immediate consequence of the macroscopic character of 
the measuring process.
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1. Introduction

In a detailed discussion of the epistemological problems of atomic phy­
sics, where explicit reference to the conditions of macroscopic observation 
is essential,1’2) a decisive part is played by the analysis of the asymptotic 
approach to equilibrium of material bodies consisting of a very large number 
of interacting atomic constituents (and possibly also of a field of electro­
magnetic radiation). In the first place, such an analysis serves in its own 
right to establish the consistency of the atomistic description of macroscopic 
phenomena, by clarifying the relation of complementarity between the ir­
reversible character of the macroscopic behaviour of the large system and 
the time-reversal invariance of its dynamical description at the atomic level.3) 
In the second place, applied to the process of observation of an individual 
atomic phenomenon by means of a macroscopic apparatus interacting with 
the atomic object, it throws light on the conceptual foundations of quantum 
mechanics.4’5)

Recent progress in the quantum theory of large systems allows us, as 
we intend to show in this paper, to treat these problems with more precision 
and more completely than was hitherto possible. The method we use was 
initiated by one of us6) and developed in numerous publications by the 
Brussels group during the last decade. This method may be applied to 
arbitrary systems but becomes especially interesting and fruitful in the limit 
of large systems, whose energy spectrum is (at least in part) continuous. 
It is then possible to follow directly the time-evolution of observables depend­
ing on a finite number of degrees of freedom through the time evolution 
of the density operator, and in particular to study the asymptotic behaviour 
of the system for times of macroscopic order of magnitude. It turns out that 
this behaviour can be given a remarkably simple formal expression under 
very general assumptions about the correlations between the constitutive 
elements of the system: in physical terms these correlations should be of 
limited range and their effects should only persist for times of atomic order 
of magnitude. The asymptotic density operator will then exhibit the expected 

1*  
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approach to equilibrium, provided that a further condition - playing here 
somewhat the same part as the condition of mixing in the theory of classical 
systems - is fulfilled by the interactions. In contrast with the ergodicity and 
mixing conditions for classical systems*)  this condition of “dissipativity” 
can be explicitly tested for typical systems of actual physical interest. Of 
course, our method can also be applied to classical systems, for which it again 
leads, in the limit of large systems, to a condition of dissipativity.

This condition plays a fundamental role in our theory, inasmuch as its 
fulfilment guarantees the existence of a well defined macroscopic level of 
description of a large system, besides its dynamical description on the atomic 
level. This new mode of description contains the usual phenomenological 
account of the behaviour of the system in terms of thermodynamics, chemical 
kinetics and other macroscopic theories. Thus, the condition of dissipativity, 
when fulfilled, establishes the possibility of introducing in a well defined 
way two complementary levels of description of atomic systems.

To illustrate the significance of this remarkable result, let us consider 
lhe evolution of the temperature of a gas. We may proceed in two ways: 
either we use the statistical definition of temperature and solve the dynamical 
problem (which is possible, at least in principle, by means of an appropriate 
computer), or we use the Fourier equation of heat conduction. These two 
quite different procedures, so far as we know, give results in agreement with 
each other. This shows that the complete dynamical description contains 
elements which in fact are irrelevant for the evolution of such an observable 
as the temperature. Now, our method, in the form elaborated in recent papers 
of the Brussels group,9~18) allows us to define with precision the part of the 
dynamical description that is relevant and to discard in an unambiguous 
fashion lhe remainder.

As shown by Prigogine, George and Henin,14) the evolution of a mechani­
cal system may be split into formally independent “subdynamics”, charac­
terized by certain projection operators, as explained in subsection 2.7 below. 
One of these subdynamics, belonging to the projector fl defined in subsection 
2.7, contains all the information about equilibrium and linear transport 
properties, and the macroscopic level of description of a large quanlal system 
is accordingly defined as that entirely expressed in terms of the variables 
corresponding to this II -subdynamics. The consideration of the macroscopic 
level of a system thus entails an enormous reduction of its mode of descrip­
tion, since all the variables associated to the other subdynamics are excluded

*) For a discussion of these conditions and their extension to finite quantal systems, see 
in particular refs.7>8). 
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from il. In relation to the macroscopic description so defined, the condition 
of dissipativity plays a fundamental part. For non-dissipative systems, such 
as quantal systems with a discrete, non-degenerate energy spectrum, there 
is no dynamical evolution in the 7Z -space, and a macroscopic level of de­
scription cannot be defined. The consideration of large dissipative systems 
is therefore essential. There also exist large quantal systems, with continuous 
spectrum, which are not dissipative (an extreme example would be a super- 
fluid system at zero temperature) : for such systems there is no macroscopic 
description, in the above sense, of their dynamical evolution.

In the next section, we present a synthetic account of the formal frame­
work of our theory, leading to the concept of subdynamics and the definition 
of the macroscopic level of quantum mechanics. Section 3 is devoted to a 
discussion of the physical content of the theory, with special emphasis on the 
epistemological problems of the atomic theory of material bodies. In section 
4 the theory is applied to the analysis of the observation of an individual 
atomic process and its bearing on the epistemological aspects of quantum 
mechanics. This still leaves out of consideration a number of important prob­
lems upon which our approach throws new light, such as those related to 
transformation theory, the introduction of collective modes or quasiparticles, 
or the definition of unstable particles.*)  We hope nevertheless that the aspects 
discussed here are sufficient to show that the theory of large quantal systems 
is an essential part of quantum mechanics, both by its physical applications 
and its contributions to the questions of principle concerning the foundations 
of atomic theory. Indeed, it makes possible an incorporation in quantum theory 
of deep-lying, general properties of matter, which could not be achieved by 
means of the usual Hilbert space formalism of quantum mechanics.

*) A monograph by I. Prigogine, C. George and F. Henin, dealing with these problems, 
is in preparation.



2. Dynamics and asymptotic behaviour of very large systems

2.1. The Liouville equation in superspace

The study of the time evolution of a quantal system can be performed 
in either of two ways. One may represent the state of the system by a vector 
|V»(O> in a Hilbert space and describe the change of the system in time as 
a rotation of this state vector, the rate of which is governed by the Hamilto­
nian H according to the Schrödinger equation. Alternatively, one may define 
the density operator

Q(t) = |^(/)><^(0l
whose time derivative p(/) is then given by the Liouville equation

h

where the right-hand side denotes h_1 times the commutator of II and p(t). 
With the help of the density operator, one can compute the expectation 
value at any time of any quantity represented by a Hilbert space operator 
A as the trace of the operator g(t)A. This mode of representation of the 
dynamics of the system exhibits most directly the correspondence, in the 
limit h -> 0, with the classical formulation of the kinetic approach to 
statistical thermodynamics, and is accordingly generally adopted for the 
quantal treatment of the same problem.

Since the quantal density operator embodies both density distributions 
in given states of the system and correlations between pairs of states, it is 
natural to regard it as describing the evolution of the system in the product 
space which we shall call “superspace” (using the prefix “super-”,
when necessary, to distinguish vectors and operators in it from those in 
Hilbert space). Operators in Hilbert space are thus “supervectors”, and the 
scalar product of two supervectors A, 13 is defined as the trace of the product 
A+B, where A+ denotes the Hilbert space operator adjoint to the operator A. 
The expectation value of the operator A in the state represented by the 
(self-adjoint) density operator q is then the scalar product tr (oA) of the two 
supervectors q, A. We may now introduce linear superoperators 0 acting 
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upon supervectors; the adjoint O' of the superoperator 0 is defined*)  by the 
condition

tr[A+(OB)] = tr [(O+A)+73J .

The transposition of a superoperator, i.e. its operating “to the left’’, denoted 
as AO, is defined by requiring that tr [(A+O)B] = tr [A+(OB)] ; therefore, 
AO = (0^A+)+, or

(OA)+ = A+Of.

Since, moreover, one has for the product of two superoperators O, Q,

(OQ)' - QV,

the adjoint of any expression involving products of superoperators and super­
vectors is obtained by the uniform rule of taking the adjoint of every super­
operator and supervector and inverting the order of factors in every product.

A frequently occurring type of superoperator, which we shall call fac­
torizable, is defined by a pair of supervectors M, N as follows:

OA = MAN;

we shall denote such a factorizable superoperator as O =MxN; its adjoint 
is 0^ = M+xN+, its transpose is given by A(MxiV) = (;VxAf)A. The product 
of two factorizable superoperators MxN, PxQ is again factorizable: (AfxtV) 
(PXQ) = MPxQN. A unitary transformation U in Hilbert space, U+U = UU+ 
= 1, gives rise to a linear transformation in superspace, which is represented 
by the factorizable superoperator W = UxU+ and is accordingly also unitary 
in superspace, in the sense that = 1x1 = 1. The invariance of
the scalar product of supervectors for unitary transformations is immediately 
proved :

lr[(W)+^ß] = tr[(^^A)+ß] = tr[A+B].

The Liouville equation may now be written in the form

^(0 = L^(0 (1)

with the help of a Liouville superoperator, which is a sum of factorizable 
superoperators :

L = — x 1 — 1 x //j .

*) The matrix representation of the superoperators defined in this subsection is given in 
the Appendix.
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The solution of eq. (1) corresponding to an initial state o(0) is formally 
expressed as

o(f) = e~iLt g>(0) ;

the time-evolution superoperator T(/) = exp (-?7J) is readily shown to be 
factorizable :*>

— 0 iLt — ø i Ht //i x øi Ht/h ^2^)

The Liouville superoperator is self-adjoint, and the time-evolution super­
operator unitary.

Projection operators in superspace will play a fundamental part in the 
following argument, and we shall be led to generalize their usual definition. 
Let us briefly explain what this generalization amounts to. Besides idem- 
potency, the most essential property of a projection superoperator P must 
be to make the projection of any density supervector q self-adjoint: (P^)+ 
= Po, in order to ensure the physical interpretation of the projection as 
density supervector in the projected subspace, and above all the reality of 
the expectation value

<A>P = tr[(Po)+A]

of the quantity represented by the self-adjoint supervector A. A superoperator 
0 satisfying the condition (OA)+ = OA for any self-adjoint supervector A 
will be said to be adjoint-symmetrical, or to have adjoint symmetry. (This 
terminology is suggested by the special form MxM+ which a factorizable 
superoperator must have in order to satisfy the above condition.) If the 
superoperator 0 is adjoint-symmetrical, its adjoint 0^ has the same property; 
this may be seen by considering the scalar product tr[B(OA)], where A 
and B are two arbitrary self-adjoint supervectors and OA = AO^: this product 
may in fact be written tr AO'-B as well as tr [A(OtB)+]. Now, in virtue of

ti

(Ili x 1)P (1 x J71+)n-p

1 1(1 x [Hx+]n-p)

00

it follows that

p = 0

*) The proof is given here as an example of the calculus of factorizable superoperators. 
Putting LY — — iLt/ft, H1 = — i IHh, we have

n _
2 •■•= 2 
p=o p=(

00 
y

nM)

e-^i = e^i x e^i+-

00

2
n — p=0

n
= 2 ~r~—x O 

pt0P-'(n-p!)
and since 
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the idempotency of P and P\ the expectation value <A>p may also be 
written tr[(Po) (P^A)]: this shows that if we want to interpret it as that of 
the projected supervector PA, we must impose upon the projector the fur­
ther requirement of being self-adjoint. This is the case for the usual projectors 
constructed from (self-adjoint) projection operators in Hilbert space Pm, Pm.:

P = y [P mx Pm.' A Pmr x Pm] — Pm x Pm',

the symmetrization being necessary in order to satisfy the adjoint-symmetry 
requirement. However, this further specification of the expectation value 
will prove too restrictive for our purposes, and the physical meaning of the 
above definition of <A>p is perfectly clear and precise without it, provided 
that the adjoint-symmetry condition is fulfilled. Hence, we shall give up the 
requirement of self-adjointness for projectors in superspace, and consider as 
such the wider class of idempotent superoperators satisfying the condition 
of adjoint symmetry.

Although the superspace representation is equivalent to the usual one 
might therefore appear as no more than a convenient formalism, it will turn 
out that it actually opens possibilities of description of fundamental physical 
properties, not adequately dealt with in the Hilbert space representation, 
because they essentially require the use of non-factorizable superoperators, 
in particular projection superoperators in the generalized sense just defined.

2.2. Energy spectrum and time-behaviour of large systems

The structure of the energy spectrum leads to a clearcut distinction 
between two types of large systems: systems of finite degree of freedom and 
finite extension, whose energy spectrum is discrete, and systems of infinite 
degree of freedom and infinite extension, but finite density of constitutive 
elements: the latter have essentially a continuous energy spectrum, possibly 
combined with a set of discrete slates. The spectral decomposition of the 
Hamiltonian may be written as a Stieltjes integral

H = 7i ( vk dP(k),

where the symbol k represents a set of appropriate quantum numbers, and 
hvk the energy eigenvalue corresponding to definite values {k} of this set. 
According to eq. (2), the corresponding decomposition of the time-evolution 
superoperator is

T(/) = H dP(Â) x dP(Å') (3)
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Any discrete sequence of states, with eigenvalues hvn, will accordingly give 
a contribution to 7’(f) almost periodic in time. This shows that finite quantal 
systems, with discrete spectrum, cannot be expected to exhibit any irrever­
sibility in their asymptotic behaviour. Infinite systems, on the other hand, 
allow of a direct approach to their dynamical lime-evolution.

Indeed, it follows from eq. (3) that the contribution to @(/) = 7’(f) p(0), 
with p(0) = l^oMy’o I j of a continuous part of the energy spectrum, has matrix 
elements of the form

<k\e(t)\k'> = <A^0><V>olOe-2™(v*-^

Now, an amplitude like , when continued analytically in the plane
of the complex variable Vk, is in general*)  a multivalued function of this 
variable, with branch-points on the real axis at various thresholds of exci­
tation, and its domain of uniformity of physical interest for t>() (owing to 
the time-reversal invariance of the evolution, it suffices to consider positive 
times) consists of adjacent parts of Riemann sheets below the real axis 
limited by cuts issuing from the thresholds. The integrations occurring in the 
calculation of an average tr g(t)A may be transformed so as to involve 
integrations over the energy variables Vk and vk,. The contour of integration in 
the plane of each variable may then be closed by a parallel to the real axis 
at infinite distance in the lower half-plane, with indentations along the cuts. 
The “resonance” poles of the integrand inside this contour,

2%vr = 2^er — -~iyr (yr>d),

will yield exponentially decaying terms to the integral, to which is added a 
“background” whose time variation is more complicated. The resonance 
contributions to tr p(/)A have accordingly a time dependence of the form 
exp [ — 2%z(rr — corresponding to processes of frequencies Er — er>, de­
creasing exponentially with decay times [j(yr+yr')]_1. These life-times vary 
over a very wide range, extending from the time-scale characteristic of 
individual atomic processes to that of macroscopic relaxation times. In the 
simplest case, in which only these two extreme time-scales appear, one may 
expect that it would be possible, at least approximately, to separate the direct 
effects of short-lived atomic processes from the slower evolution of the system 
on the macroscopic time-scale.

Before pursuing this line of argument, we must mention another essential 
difference between finite and infinite systems, which, as we shall see, is of 
relevance for their asymptotic behaviour: it concerns the invariants of the

) Cf. on this point, e.g., refs.6) and 19). 
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system, i.e. those Hilbert space operators ø which commute wilh the Hamil­
tonian, and accordingly satisfy lhe equation L0 = 0. Whereas the invariants 
of finite systems are regular operators within the Hilbert space of state 
vectors of finite norm, those of infinite systems are of two distinct types: 
besides “regular” ones, there is an infinity of invariant operators which do 
not have the regularity property just mentioned.*)  We shall discuss this point 
in detail in subsection 2.8.

*) The distinction between regular and singular invariants also applies to classical systems; 
the first mention of it occurs in a paper by P. Résibois and I. Prigogine,20) devoted to classical 
dilute gases. Cf. also ref.6).

2.3. Independent modes of motion and correlations

In order to proceed further, we must introduce a more explicit charac­
terization of the constitutive elements of the system and the interactions 
between them, which would allow us to account for the continual change 
of the system in the course of time as the result of transition processes brought 
about by such interactions. As usual, this is done by reference to an idealized 
“model system”, susceptible of independent, non-interacting, modes of 
motion, defining a complete orthogonal basis of representation in Hilbert 
space. The interactions producing correlations between these modes are then 
defined as those which transform lhe model into the real system. The choice 
of the model system is dictated by physical considerations: for a dilute gas, 
the natural model will be a perfect gas, for a crystal, a perfect lattice sus­
ceptible of collective harmonic oscillations. The essential requirement is that 
the basic modes should have some operational meaning, in the sense that 
we can imagine situations conveniently represented by them. In any case, 
all physical results of the theory, expressed as expectation values of suitable 
operators, are of course independent of the choice of the model system, since 
a change of basis is effected by a unitary transformation.

The total Hamiltonian H is thus decomposed into the Hamiltonian 7/(°) 
of the model system and a residual interaction Hamiltonian The spec­
trum of the model Hamiltonian

H<°> = h Ç dP(m),

will generally be a continuum, in which a set of discrete states may be 
embedded; the “Friedrichs model”21) is of this type, with only one discrete 
state. The collective index m stands, as the case may be, for a set of quantum
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numbers of single-particle slates (properly symmetrized or antisymmetrized) 
or for a set of occupation numbers. In superspace, a complete orthogonal 
basis consists of the Hilbert space projection operators*)  Pm = ; the

*) For a continuous spectrum, we define Pm = t dP(m), where dPm = |m> dm <m|, 
.'e (m)

and e(m) is an infinitesimal neighbourhood of m. We further interpret a summation over m 
as \ dm . . . and the Hilbert space scalar product <m| m'> as the distribution ô(m-m'). Then, 
the idempotency, orthogonality and completeness relations P-mPm' = Pm ômm- and LmPm = 1 
hold for both the continuous and the discrete part of the spectrum.

**) From now on, we adopt the elegant formalism developed by M. Baus,10) of which we 
present a version improved in some important respects, and extended to take account of later 
progress.1217) Some mathematical aspects are discussed by J. Rae.11) Another general exposition 
has lately been given by Balescu and Wallenborn.18)

corresponding orthogonal projectors in superspace are the factorizable super­
operators Pm*  Pm- formed by all the pairs of supervectors Pm, Pm,.

With a view to distinguishing the effects of the correlations from the 
behaviour of the model system, we now introduce a subdivision of the total 
basis in superspace into two orthogonal and complementary subsets, defined 
by two superprojectors Po, Pc with P0 + Pc = 1- Thus, for the Friedrichs 
model, where we wish to study how the correlations PPP couple the discrete 
state of the Hamiltonian H(o) with its continuum, we may take for the sub­
space Po that defined by the discrete state, and consequently Pc by the 
continuum.16’ 17> More generally, we shall include in Po all the projectors 
Pm*P m formed of pairs of identical states; if the external conditions allow 
for a bulk flow of the system, we shall add to these the projectors Pm*P m- 
for all the pairs Pm, representing the same internal physical state of the 
system; the subspace Pc consists of all the remaining projectors Pm*Pm-,  cor­
responding to those pairs of states between which transition processes take 
place owing to the short-range, atomic correlations. Still other decomposi­
tions may prove useful for specific problems;18) for our general argument, 
the precise mode of decomposition chosen is irrelevant, provided that it 
confines the short-range correlation effects to one of the two subsets.

The adopted decomposition effects a separation of the density supervec­
tor into two components:**)

2(0 = + 2c(0> Qo(l) = PoQ(l), Qc(t) = Pcg(t).

The density £o(0 represents an average distribution referred to the states 
of the model system, whereas the supervector oc(0 accounts for the effects 
of the fluctuating correlations among these states. Between oo and qc we derive 
from eq. (1) a set of coupled Liouville equations:
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io0 — LqoQo + Loc@C> (4)

where
IQc ~ LccQc + LcoQo, (Ö)

Loo = P0LPo, Lcc = PcLPc, Loc = PoLPe, Lco = PcLPo.

We shall especially use the equivalent integrated form of eq. (5),
t

Qc(P) = c~iLccl J ßc(0) - i jj dr e!'M LC0o0(t)

o
(6)

exhibiting the occurrence of the time-evolution superoperator

Tc(t) = e = e ipcLt Pc = Pc e iLPct, G)
which is going to play an essential part in our analysis.

The superoperator Tc(/) describes a time-evolution proceeding entirely 
by transitions between states of the correlation subspace; we have called 
such sequences of processes confined to the correlation subspace the “ir­
reducible dynamics” of the system: its explicit consideration is one of the 
main points of our approach.6- 10) Indeed, in contrast with the total time­
evolution superoperator T(P), we may expect that the superoperator Tc(t) 
may have a simple asymptotic behaviour:*)  in view of its exclusive depend­
ence on correlation effects, its time-variation may be dominated by decaying 
pole terms of atomic life-times. More precisely, we shall consider the pos­
sibility that the application of the superoperator Tc(f) to any regular super­
vector which is not an invariant in the correlation subspace gives a result 
which, in the asymptotic limit of positive values of the time of macroscopic 
order of magnitude, becomes of negligible importance. This condition may 
be formally expressed as

lim TC(ØA = 0 (if LPCA * 0) ; (8)
t ->+ 00

in terms of the Laplace transform
00

- Jj rc(/) e~z( d/ - - - - i (9)

0

an equivalent expression for it is

*) We must exclude from consideration in this respect the time-evolution superoperator 
exp (—zL00f); e.g., for homogeneous systems, where Po = EmPm* Pm, one has ^oo = 0-
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lim z C(c) A = O (if LPCA 0), (10)
z->+0

implying that ^c(z)A is a regular function of z in the neighbourhood of 
z = + 0. If PCA is an invariant, one has instead z<!7" c(z)A = PCA.

This analyticity condition may be used in principle for a classification 
of dynamical systems. It has indeed been shown that it is satisfied in the 
thermodynamic limit for large systems with short-range interactions, when a 
perturbation expansion can be carried out with respect to a “small” physical 
parameter, such as the coupling constant or the density. Moreover, it is seen 
to be exactly fulfilled (independently of any perturbative approach) for solu­
ble systems such as the Friedrichs model.17) It is not the aim of the present 
paper to investigate this question any further. We shall simply assume that 
we are dealing with systems that satisfy the condition (8) or (10): it is for this 
class of systems that we shall arrive at a unique definition of a macroscopic 
level of description, complementary to the dynamical one. The assumption 
(8) will indeed prove convenient for the derivation of simple asymptotic forms 
for the density supervectors q0 and qc- It must be stressed that the introduction 
of this assumption destroys the invariance of the description for time-reversal : 
for in retrodiction the operator Tc( - f) describes the buildup of the resonance 
states of the system - an aspect of the evolution on the atomic scale which 
is all but negligible. An interesting type of system from the physical point 
of view is that in which the interactions between the constitutive elements 
are such as to determine two characteristic time-scales of very different orders 
of magnitude: on the one hand, any coherent processes involving states col­
lected in the subspace Po have relaxation times belonging to the macroscopic 
time-scale; on the other, the individual processes due to the finite-range 
interactions between the basic modes of the model system, which occur be­
tween states of the subspace Pc, have decay times of atomic dimension. Sys­
tems for which no such separation of time-scales can be made may be 
discussed by more general methods.

2.4. Asymptotic density supervectors and evolution equations

By means of the assumption (8), we will now set up solutions of the 
Liouville equations (4), (5) valid for large positive values of t; these solu­
tions, which we shall denote as Qo(t), Qc(t), will then be associated with the 
actual density supervectors Qo(t), oc(t) by an appropriate condition: this will 
allow us to interpret @0(/), @c(0 as the respective asymptotic forms of @o(0> 
Qc(J)- Taking eq. (6) first, we neglect the first term on the right-hand side 
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(which means, physically, thai we assume the effect of any initial correla­
tions to be dissipated), and in the second term, re-written as

- i \ dr e~lLccr Lco q0(j - r),
r
0

we replace Q0(t-T) by the asymptotic solution @0(/-r), since the integrand 
is only important for small values of t; we thus obtain

Qc(t) = - zjdr e~zLccT Lcooo(t - r). (11)
o

Next, let us consider eq. (4); for large values of t, it becomes, on account 
of eq. (11), an integro-differential equation for q0:

ifro = L00Qo - iLoc dr e-iL^zLCo Qo(t - r) .
o

Let us introduce*)  an asymptotic time-displacement superoperator 0 in the 
Po subspace by the definition

idQo = 0qo df,
or, alternatively,

^o(0 = eu6^o(0) (for/> 0). (12)

Inserting this expression in eq. (11) yields the asymptotic relation
t

I 0 - Loo + iLoc jj dr e~iLccT Lco ei0T | £o(f) = 0, 

o

which can be further modified, according to our assumption (8), by ex­
tending the integration over r to infinity. We thus obtain a functional equa­
tion for the superoperator 0:

00

0 = Loo- iLoc dr e~tjLccT Lco e.zdr,

o

which may be solved by iteration,9- 18> starting from the ansatz 0 = 0 (which 
would correspond to a stationary asymptotic distribution). By defining a 
time-independent superoperator

) The superoperator 0 was first considered by P. Résibois and further studied by C. George.9)
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iC = ( dr Tc(t)Lco eÏÔT, (13)

o

we may re-write the equation for 0 as

0 = Loo + LocC, (14)

and treat the equations (13), (14) as a set of coupled equations for the 
determination of 0 and C. The role of the latter appears when, returning to 
eq. (11), we repeat on the right-hand side the preceding transformations; 
this gives the very simple result

Qc(t) = CQo(t). (15)

According to its definition (13), C describes the effect of an infinite 
sequence of processes starting from a slate in the subspace Po and leading 
to a state of the correlation subspace Pc either directly or through inter­
mediate states: in other words, C describes the “building up” of the correlation 
component qc, as expressed by eq. (15). We therefore call C the “creation 
superoperator” of correlations. It should be noted that one may derive from 
the definition (13) of C, by partial integration, the identity

C0 = Lco + LceC, (16)

use being made once more of the assumption (8). Combining this with eq. 
(14), one obtains a non-linear equation for the determination of C:

(-•Loo + CLocC = Leo + LccC •

So far, we have defined the asymptotic supervectors £o(0, {?c(0 by eqs. 
(12), (15), as solutions of the “kinetic equations”

ÎQo = Oqo, IQc — COqo ■

If, in these equations, we substitute for 0 and CO their respective expressions 
(14) and (16), and take account again of eq. (15), we see that they become 
identical in form with the Liouville equations (4), (5): in other words, the 
asymptotic density supervectors are exact solutions of the Liouville equations. 
It remains to be seen how they are related to the solutions Qc(t) which 
describe the behaviour of the system on the atomic scale.

2.5. Heisenberg representation and time-reversal

As a preparation to the elucidation of this point, it will be necessary to 
repeat the preceding considerations from the point of view of Heisenberg’s 
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representation. In the latter, any (time dependent) operator A(£) satisfies the 
Liouville equation

zl(0 = -LA(f),

where the Liouville superoperator is, of course, time-independent. Let us 
now define the time-inversion of any supervector or superoperator as the 
transformation which consists in both changing the direction of time and 
taking the adjoint:

Ä(O-A+(-O. ö(0-o’(-f).

Since the Liouville superoperator, which is self-adjoint, changes sign on 
transposition, the time-inverse supervector A(f) obeys the same Liouville 
equation

zA(O = LA(0

as the density supervector. The projectors Po, Pc being invariant for time­
reversal, we may define components

Äo(0 = FoÄ(0, Äc(0 = PcA(t)

and corresponding asymptotic components A0(f), AC(Z), with a time-evolu­
tion governed by the superoperators 6 and C :

Ao(0 = e~i6t Ao(0), Ac(0 = CA0(/).

In this context, these superoperators appear as the time-inverses of new 
superoperators

T] = 0, D = C,

determined by functional equations derived from eqs. (14), (16) and (13) 
by time-inversion:

o

?? — Loo + DLco, (17)

T]D — Loc 4*  DLCC j (18)
00

- ( dr ef,'T L„ T„ (r), (19)

Mat.Fys.Medd. Dan.Vid. Selsk. 38, no. 12. 2
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In contrast to C, the, superoperator D, according to its definition (19), leads 
from a state of the correlation subspace Pc to a state of the subspace Po: 
it describes the processes leading to a “destruction” of correlations, and is 
called, accordingly, the “destruction superoperator”.

It is important to notice that in applying the time-inversion transforma­
tion to the right-hand side of eq. (13) in order to obtain eq. (19), one has 
to leave the integration variable r unchanged, but change the interval of 
integration over r to (0, — »). This clearly shows that the change of the 
direction of time can affect seemingly time-independent superoperators like 
C and I) which are defined through an asymptotic time-limiting procedure. 
A comparison of the expressions (13) and (19) for C and D, together with 
eqs. (14) and (17), shows that the time-inversion transformation, for such 
superoperators, consists in taking the adjoint and inverting the sign of L. 
The time-inversion may obviously be performed in the same way for op­
erators depending explicitly on the time variable, since this time dependence 
may always be expressed as a functional dependence on iLt‘, one may there­
fore consider the transformation just defined as equivalent to time-inversion.

According to this definition, it is clear that time-reversal invariance of 
a superoperator depending on L does not in general imply its self-adjoint­
ness: this is only the case if its functional dependence on L is not affected 
by a change of sign of L — in particular (trivially), if the superoperator does 
not depend on L. Thus, time-inversion appears as a natural generalization of 
adjointness for superspace operators, and time-reversal invariance as a 
natural generalization of self-adjointness. The adequacy of this generaliza­
tion with respect to the requirements of physical interpretation is guaranteed 
by the simple, but very important fact that the superoperator zL, and con­
sequently any superoperator which is a functional of iL, is adjoint-symme­
trical. The equality (z’LA)+ = iLA for any self-adjoint supervector A follows 
indeed immediately from the self-adjointness of L and its transposition 
property LA = - AL. The superoperators C, z'0 as well as D, ir], as appears 
from eqs. (13), (14), (17), (19) which deline them, offer examples of super­
operators which are functionals of iL, and accordingly adjoint-symmetrical. 
It will soon turn out that the time-dependence (in the extended sense just 
introduced) of all density supervectors of physical interest (such as Q(t) and 
@(0) can be expressed in the general form Qo(f) = O[iL] q, where q is the 
initial density supervector and 0[iL] an appropriate superoperator which is 
always a functional of iL: these time-dependent density supervectors are 
therefore self-adjoint, as well as their time-inverses, and the expectation 
value of any self-adjoint supervector A, which can accordingly be written 
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tr qo(P)A, or equivalently*)  tr q0( - t) A, is always real — a property essential 
for its physical interpretation.

The functional equations for 0 and rç, given by the combination of eqs. 
(14), (13) and (17), (19), respectively, can be put into a more compact form:

00 00

0 = Loo - i dr’//(r)eîÔT, rj = Loo - itA*  dre^^r), (20)

o o

with the help of the superoperator

^(0 = Loc Tc(t)Lco. (21)

The superoperator ^(t) represents a transition from the subspace Po to 
the same subspace exclusively through states of the correlation subspace; it 
is therefore called the “irreducible collision operator’’. The formulae (20) 
show how the asymptotic superoperators 0 and t] essentially arise from 
sequences of interaction processes belonging to the “irreducible” dynamics 
of the system. The interaction superoperator ¥^(0, or its Laplace transform

^j§f(z) = Loc^rc(z)LCo ~ zLoc D j ~ Po, (22)

has an important function, as we shall soon see, in the formulation of a 
general characterization of the asymptotic behaviour of infinite systems.

An explicit relation between 0 and Tj is readily derived from eqs. (14), 
(16) and(17), (18):

No0 = t]N0, with No = 1 +DC ; (23)

according to eqs. (13), (19) and (21), one may write
00 00

No = 1 - dr dr' ei??T ^(r + t) ei0T'. (24)

o o

*) Such time-dependent expectation values are conserved under a group of time-dependent 
transformations U[i£], defined in such a way that the transforms A', g'(/) of A, p(l) are, respect­
ively,

A'~U[iL]A, U[-iL]S(t),

and characterized by the condition

TqTZj U[lL] = U[iL] 77[7Z] = 1.

This condition indeed ensures thattrp'(~0 A’ = trg( —f)A. This is a generalization of the group 
of unitary transformations, in which adjointness is replaced by time-inversion. It has been 
considered under the name of “star-unitary” group in previous papers of the Brussels group; 
see especially the second paper of ref.15). In contrast to the unitary transformation superoperators, 
the star-unitary ones are not factorizable: they belong specifically to the superspace. 

2*
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In general, No will have an inverse, and the relation (23) between 0 and r] 
will then take the form

r/ = N0ON0~\ 0 = No-^No. (25)

2.6. Relation between asymptotic and dynamical behaviour

Let us now return to the asymptotic density supervector q0(J) and its 
time-evolution (12). From the relation (23) we see that this evolution can 
be expressed by means of the superoperator r] as follows:

N0Q0(t) = No e-idtQo(^ = e-lWo^o(0); (26)

in other words, the time-evolution of NoQo(l) is governed by the superoperator 
T]. On the other hand, it follows from eqs. (17) and (18) that

rj(P0 + D) = (Po + D)L. (27)

This remarkable commutation property implies that the time-evolution of 
the supervector (P0 + D)Q(t) is also given by the superoperator 77:

i(P0 + D)Q = (Po + D)Lq = 7](P0 + D)q. (28)

Hence, if we choose al any “initial” time

ëo(0) = A7o-1k>o(()) + />oc(())L (29

this relation will subsist at any future time and thus ensure the interpretation 
of Qo(t) and @c(t) as the asymptotic form of the dynamical density supervectors 
Qo(t), Qc(t).

2.7. Projection onto orthogonal subspaces and “subdynamics“

The relationship just established is part of a set of similar ones, which 
it is interesting to present systematically. According to eq. (15), the asymptotic 
density supervector o = q0 + Qc is contained in a subspace defined by the 
idempotent superoperator Pa = Po+ C :

o(f) = PaQ(t).

Being also adjoint-symmetrical, the superoperator Pa is a (generalized) pro­
jector. Let us consider the subdivision of the superspace into the orthogonal 
subspaces determined by the projector Pa and its orthogonal complement:

Pa = Po + C, Pb = Pc-C, (30)
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as well as the similar subdivision by means of the time-inverse projectors

Pa = Po + I), Pb = Pc-D. (31)

Besides the superoperator No defined by eq. (23), we introduce another one,
Nc: 

No = 1 + DC, Nc = 1 + CD, (32)

and we readily verify the relations

PaPa = P0N0 = NoPo, Pt>Pb = PcNc = NcPc (33)

Further, we note that

PaPo= Pa, PoPa = Pa- PcPb = Pb, PbPc = Pb. (34)

We already know the mutually time-inverse superoperators

6 = PoLPa, r/ = PaLPo-, (35)

they satisfy the relation (27) and its time-inverse, i.e.

Pae = LPa, r^Pa = PaL, (36)

from which eq. (23) follows al once. We may now introduce a further super­
operator C and its time-inverse À:

£ = PcLPb, z = PbLPc; (37)
they satisfy the relations

Pt£ = LPb, ÅPb = PbL. (38)

Hence we have, together with eq. (23), an analogous relation involving £,
2 and Nc:

Nod = t]N0, Net = ÅNC. (39)

With this notation the results of the preceding subsection, expressed by 
eqs. (12), (15 and (29), take the compact form

~e(i) = è(t - t0) e(to), (40)
with

f(0 = Pa e-idtN0-ipa = PaN0-i e-^Pa, (41)

the last form for 2?(0 following from the first on account of eq. (23); the 
equivalence of these two forms shows that the superoperator N(t) is invariant 
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for time-reversal. Eq. (40) expresses the general correspondence between 
the asymptotic density supervector p(/) at any time t and the dynamic super­
vector o(/o) at any former time t0. By using eqs. (33) and (34) one readily 
verifies that the superoperator t(f) has the semi-group property

27(b) 2?(^) = 27(/i + ^) (h, b>0). (42)

Taking the limit t0 -> / in eq. (40), we obtain from it a relation between 
the asymptotic and the dynamic density at the same time:

ê(0 = ^(0> (43)

where the superoperator ~ 
n = PaN0^Pa (44)

is a projector in superspace, since it is adjoint-symmetrical and, according 
to eq. (42), idempotent. We have, moreover, in virtue of eq. (42),

f(0 = f (07/ = (45)

and therefore also, by combining eqs. (40) and (43),

g(0 = to)Q{to). (46)

Finally, eqs. (36), (39) and (44) allow us to write

PaONo-^Pa = Ln = nn = PaN0~^Pa (47)
and consequently

2J(/) = e~iLtn = fl e~iLt. (48)

We thus arrive at the remarkable conclusion*)  that the asymptotic density 
supervector is a solution of the Liouville equation, characterized as the 
projection of the dynamical solution onto a subspace 7Z of the Hilbert super- 
space, and that the asymptotic time-evolution is entirely contained in this 
“asymptotic subspace”.

The orthogonal complement of the subspace II is susceptible of an equ­
ally simple characterization, by means of the superoperator

II = PbNc-^Pb. (49)

Indeed the latter is immediately recognized to be a projector orthogonal to

!) This result was first derived by I. Prigogine, C. George and F. Henin.14, 15) 
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II; it is actually = 1-77, since the idempotent operator 1 - (77 + 77) has zero 
trace, according to eqs. (33), and is therefore = 0. The time-evolution of the 
supervector

ê(0 = ^2(0 = e(0 -j?(0 (50)

is given, according to eqs. (38) (39), by the superoperator

2(0 = Pb e-^Nc^Pb = PbNc~i e-atPb (51)

which has the same semi-group property as 27(f) and satisfies the similar 
relations

27(f) = Q-iLtfi = n (52)

In oilier words, the time-evolution of the supervector g(t), which describes 
the fluctuations of the system on the atomic scale,*)  is entirely contained in 
the “fluctuation subspace” 77, orthogonal to the asymptotic subspace 77. 
Both components Q(t), of the dynamic density supervector p(f) are, like 
the latter, solutions of the Liouville equation : they receive their respective 
characteristics — asymptotic irreversibility, atomic-scale fluctuations — exclu­
sively from the projection onto the corresponding subspaces. One may say 
that the asymptotic evolution results from a “subdynamics” of the system,**)  
unfolding itself on the macroscopic time scale in the subspace 77.

2.8. Invariants of the system

Let us finally examine the relation of the subdynamics with the invariants 
of the system; as already mentioned in subsection 2.2, this relation is an 
important aspect of the theory of large systems. If we decompose the invariant 
0 into its components <7l, 0C, the invariance conditions take the form

Loo<I>o + Loc&c ~ 0, (53)

*) Clearly, the density distribution o(7) includes only those fluctuations that cannot be 
detected under the given conditions of observation. For instance, the usual fluctuations around 
the thermodynamic equilibrium state can be derived from the corresponding asymptotic distri­
bution density @(oo) and are therefore contained in the asymptotic subspace 77.

**) In the preceding argument, we have started from the construction of an asymptotic 
solution of the Liouville equation and shown that it corresponds to a “subdynamics”. A differ­
ent point of view may be adopted:22, 23) we may first study the conditions enabling us to separate 
the density supervector into two components evolving independently, and then discuss under 
which conditions one of the components represents an asymptotic solution of the Liouville 
equation. The conception of subdynamics may be extended to relativistic dynamical systems, for 
which R. Balescu and L. Brenig24) have shown that the projector 77 commutes with the ten 
generators of the Poincaré group.
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7■‘CO&O + 7-cfØ c — 0. (54)

Multiplying eq. (54) on the left with —iTc(f) and integrating over t yields

- z Ç d/Tc(f)Lco0o + [7XO “ 1] = 0. (55)

o

If øc is a regular supervector, not itself an invariant, our fundamental asymp­
totic assumption, expressed by eq. (8), ensures that linp^x Tc(f) 0C = 0 and 
that the supervector C(0) 0O, with

oo

C(0) = ~ * Ç df Tc(T)LCo, (56)

o

exists. Eq. (55) thus becomes, in the limit t ->oo,

(Dc = C(O)0o; (57)

inserting this expression for 0C into eq. (53), we get

[Loo + LocC(O)]0o = 0. (58)

As a comparison with eqs. (13), (14) shows, this means

00 = 0 (59)

(and therefore also, by time-reversal, 0;/ = 0). Making use of the notation 
(30) for Pb = Pc- C(0), we may re-write eq. (57) as P&0 = 0, and therefore, 
according to eq. (49),

770 = 0 : (60)

the invariant ø is contained in the asymptotic subspace 77.
The above argument could be formulated with the help of the Laplace 

transform ^~c(~) of Tc(t) and the related superoperator ^(c) = - i^c(z)LCo‘ 
instead of eq. (55), one could start from

^(z)0o + [z^c(z) - 1] øc = 0. (61)

The assumed properties of 0C imply, according to eq. (10), limz^+0 ;^c(z)0c 
= 0 as well as the existence of limz^.+0 ^(2)00 = C(0)øo. Eq. (58) may then 
be written, in terms of the Laplace transform (22) of the interaction super­
operator,
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[Loo~ i■*"  ^)] = O, (62)

- an equation equivalent to eq. (59), but of a more convenient form for 
concrete applications of the theory. This limiting process is not permissible 
if 0C does not have the two properties assumed in the preceding argument; 
but one may always combine eq. (61) directly with eq. (53) to obtain

[L00-i W^(z)]$+iz@(z)&c = 0, (63)
where

■®(z) = — iLOc c(z). (64)

If 0C is a regular invariant, one has (as pointed out in subsection 2.2 after 
eq. (10)) limz_>+0 z STc(z)d>c = &c and therefore limz_>+0 z^(z)øc = 0: in this 
case, eq. (62) is still valid. If 0C is a singular supervector, the limit of zQ>Çz)d>c 
for z -> + 0 exists, but does not vanish, and eq. (62) does not hold. This 
discussion shows, therefore, that eq. (62) and the equivalent equation (59) 
are characteristic for the regular invariants. Moreover, it is readily seen that 
any supervector obeying these equations is an invariant if it belongs to the 
asymptotic subspace. Indeed, it follows from eq. (36) that the relation 
OF = 0 implies LPaF = 0, i.e. the invariance of the supervector PaF, and 
consequently the invariance of F if F = PaF; but according to the definition 
(44) of n the equations F = J7F and F = PaF are equivalent. We thus arrive 
at the remarkable conclusion that the asymptotic subspace 77 contains all 
the regular invariants of the system and only those; the validity of eq. (62) 
is a critérium for deciding whether any supervector of the asymptotic subspace 
is a regular invariant.

A further simple result can be obtained if the projectors PO,PC can be 
adequately chosen in such a way that L0o = 0, as is the case, in particular, 
for homogeneous systems. Then, those systems for which the superoperators 
^^( + 0) an(1> equivalently, 0, rj, vanish identically are such that all super­
vectors contained in their asymptotic subspace are invariant. The behaviour 
of systems of this class is strictly dynamical: in the asymptotic subspace, 
the density supervector, as well as, in the Heisenberg representation, all 
supervectors contained in this subspace, arc stationary; all processes occur 
in the subspace 77, in an entirely reversible way. The systems exhibiting the 
normal thermodynamic irreversibility are therefore characterized by the ex­
istence of a superoperator 0 or p which does not vanish identically: we 
call 13> 14> 15> such systems dissipative, and the condition just formulated “con­
dition of dissipativity”. Especially in the form
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V7+ 0) O, (65)

this condition offers a convenient critérium to decide whether a given system 
has the normal asymptotic behaviour. Thus, the Friedrichs model, lor which 
explicit calculations can be carried out completely and rigorously,17) offers 
in this context a very precise picture: if the coupling between the discrete 
state and the continuum preserves the former (leading for instance to a bound 
state), the superoperator 0 vanishes identically; if the coupling destroys the 
discrete state, the system is dissipative.

Among the regular invariants one distinguishes the important set of those 
which Khintchin has called “controllable”, because their values can be fixed 
by the external conditions of observation. Besides the Hamiltonian, this set 
consists of the operators defining the infinitesimal transformations of the 
groups with respect to which the system is invariant: space translations and 
rotations, for instance, with which the components of the total momentum 
and the total angular momentum are respectively associated. In the theory 
of classical finite systems, the controllable invariants determine the manifold 
in phase space on which the ergodicity condition can be formulated: the 
other invariants do not lead to any reduction of the dimensionality of this 
manifold. In the case of infinite systems, as we just have seen, only the regular 
invariants are retained at the macroscopic level of description, whereas the 
singidar ones play no part in the definition of this level or of the asymptotic 
time-evolution taking place in it; in simple examples, such as that of a gas 
of weakly coupled particles or the more general Friedrichs model, one finds 
that the regular invariants are just the controllable set.17) This clear-cut 
discrimination of the set of invariants which enter into the description of the 
irreversible macroscopic behaviour of the system is paralleled in the account 
of phase transitions : here also it is in the limit of infinite systems that a sharp 
distinction becomes possible between the regular points of an isotherm and 
those singular points at which a phase transition occurs.



3. Epistemological problems of the atomic description of 
macroscopic phenomena

3.1. The historical background

The epistemological problems raised by the attempt to base the descrip­
tion of the directly observed phenomena on the atomic constitution of matter 
have forced themselves on the attention of physicists since the pioneering 
work of Maxwell and Boltzmann, but they could only be clearly formulated 
after the dynamical behaviour of the atomic constituents had found its defi­
nitive expression in quantum mechanics and the conceptual foundations of 
this theory had been elucidated. In the perspective of XIXth century physics 
it was natural enough to assume that the dynamics of the atoms was the same 
as that of large bodies, and accordingly to interpret the quantities charact­
erizing the properties of these bodies as suitable averages over quantities 
pertaining to the constituent atoms. This averaging process seemed so far 
from being problematic that in the early papers of Clausius and Boltzmann 
it was not even mentioned explicitly.

However, the apparent contradiction between the irreversible evolution 
of macroscopic bodies and the time-reversal invariance of their description 
as atomic systems soon led Maxwell and his follower Boltzmann to their 
still fundamental analysis of the role of statistical causality in atomic physics. 
Of course, sharing the universal belief in determinism as the ultimate causal 
pattern of natural laws, they regarded any recourse to statistics as a pis-aller, 
but they correctly insisted on the fact that such a recourse was dictated by 
the very conditions of macroscopic observation. This point was variously 
elaborated both by Gibbs and by the Eiirenfests; the former forcibly 
pointed out that irreversibility at the macroscopic level results from the cir­
cumstances defining the corresponding mode of observation, while the latter 
introduced the notion of “coarse-grained” distribution as a mathematical 
expression for a mode of observation not reaching down to the dynamical 
determination of the atomic system. On the other hand, it was clear to 
Maxwell and Boltzmann that the equilibrium distribution had to arise 
naturally from the dynamics, and they had the correct intuition (albeit in­
correctly formulated) of ergodicity as the dynamical property primarily 
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responsible for fixing the form of the asymptotic distribution. Gibbs wanted to 
express the same physical conception by his “mixing” simile, which, how­
ever, turned out to be a stronger dynamical requirement than ergodicity.*)

*) See, e.g., ref. 7).

The development of quantum mechanics cannot affect the specific epi­
stemological problems arising from the atomistic structure of matter, but it 
makes it easier to cope with them, by supplying us with adequate mathe­
matical and logical tools for handling statistical averages of atomic quantities 
and probabilities of atomic processes. The statistical form of causality is now 
prevailing both in the account of individual atomic processes and of macro­
scopic phenomena; it is essential, however, to maintain a sharp distinction 
between these two forms of statistical causality, which are logically independ­
ent: the former has its origin in the existence of the quantum of action, 
the latter depends on the degree of freedom of the systems investigated, which 
may be characterized by some critical parameter, such as Avogadro’s num­
ber, defining the order of magnitude we call “macroscopic”. The formalism 
offers us uniform rules for dealing with both types of statistics and the rela­
tions of complementarity associated with each of them. In particular, as 
pointed out in the preceding section, the quantal density operator determines 
both the average distributions and the correlation coefficients of any system 
of interacting constituents, and accordingly yields a unified formal basis for 
the discussion of the two aspects of the asymptotic time-evolution - existence 
of the asymptotic distribution and “mixing” effect of the correlations.

The ergodic approach leaves unanswered the question as to which physi­
cal characteristics of a dynamical system are decisive for its exhibiting a 
thermodynamic behaviour on the macroscopic time-scale; for the condi­
tions of ergodicity and mixing are mere mathematical formulations of prop­
erties characteristic of such behaviour, but not explicitly related to the 
physical structure of the system. One lacks here, for distinguishing systems 
which allow of a thermodynamical description from those that do not, a 
critérium linking this property more directly to the Hamiltonian.

3.2. Kinetic approach vs. ergodic theory

Even from the formal point of view, the extension of classical ergodic 
theory to quantal systems is far from straight-forward : the stumbling block 
is the difficulty of finding a representation of the conditions of macroscopic 
observation of comparable simplicity to the classical concept of coarse- 
graining. In classical theory, it is permissible to replace a coarse-grained 
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distribution, referred to some arbitrary subdivision of phase space into finite 
cells, by an idealized continuous distribution, and thus to make it independ­
ent of the mode of subdivision adopted. Il is certainly possible, as the Italian 
school has shown,8) to introduce a “cell” subdivision of the Hilbert space 
of slate vectors and to arrive at certain quantal generalizations of the ergodic 
and mixing properties of classical theory, but both the enunciation of these 
results and the algorism leading to them — so long as one insists on mathe­
matical rigour - are very cumbrous.

It must be observed, however, that the use of a coarse-grained cell sub­
division is a consequence of the cyclic character of the time-evolulion of the 
closed, finite systems dealt with in ergodic theory: in the classical case, this 
cyclic character is expressed by Poincaré’s theorem; in the quantal case, 
the discreteness of the energy spectrum leads to an almost periodic time 
dependence of the density operator. As a result, the idealized definitions of 
macroscopic quantities can only use averages taken over an infinite time, 
and it is then the object of the theory to express these as statistical averages, 
necessarily coarse-grained in view of their physical meaning. The time­
evolution of infinite systems, on the other hand, is, as we have pointed out 
in subsection 2.2, radically different: the classical Poincaré cycle becomes 
of infinite duration, and the quantal energy spectrum, being continuous, 
allows of no almost-periodicity in time; but the correlations may lead to 
the occurrence of states idealized, as is usual in the theory of aperiodic 
processes, by (non-normalizable) state vectors with amplitudes decaying or 
building-up exponentially in time. This makes it possible, as we have seen, 
to study directly such one-sided effects of the correlations over long, but 
finite time intervals: the asymptotic form the density operator takes after 
a time of macroscopic order of magnitude can then be immediately inter­
preted as representing the conditions of macroscopic observation, without 
any need for the explicit consideration of coarse-graining. In this kinetic 
approach, the part of coarse-graining is played by the projection into the 
asymptotic subspace of our Hilbert superspace; besides its simplicity, this 
operation has the advantage of clearly exhibiting the fact that the macro­
scopic mode of description is uniquely fixed by the dynamics of the system.

3.3. Main features of the macroscopic aspect of the kinetic theory

The form given to the kinetic theory in section 2 has several noteworthy 
features. The most prominent is doubtless the clear-cut separation it effects, 
through the projection just mentioned, between the level of macroscopic 
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observation, contained in the asymptotic subspace 11, and the fluctuating 
atomic behaviour of the system, which is fully accounted for by the density 
operator @(/) describing the dynamical behaviour in the total superspace. 
If the system is initially in a pure state, its density operator at any time can 
be factorized as a dyadic product of state vectors: in the asymptotic sub­
space IT, however, no such factorization is possible, no analogue to a state 
vector can be defined. Indeed, the function of the projector II is to sort out 
the part of the density operator that subsists after time intervals long enough 
to “wipe out’’ all initial phase relations between state vectors responsible for 
the fluctuations al the atomic level. In the asymptotic subspace, therefore, 
no “interference’’ of probability amplitudes occurs, but the asymptotic density 
operator £(7) embodies the description of any correlation effect observable 
at the macroscopic level.

Indeed, the formalism is not restricted to the study of the approach to 
thermodynamic equilibrium, but is applicable as well to systems presenting 
kinematic properties of macroscopic order of magnitude. It is important for 
the completeness of the theory that it should contain a formal critérium 
allowing us to recognize the type of asymptotic behaviour we may expect 
for a given system. This critérium is supplied by the condition of dissipativitv, 
which gives a simple characterization of the class of systems exhibiting an 
irreversible approach to equilibrium. It is important to note that the dissi- 
pativity condition is amenable to explicit evaluation at least in simple cases, 
such as the Friedrichs model, and relates the dissipative character of the 
system directly to the structure of its energy spectrum.

For dissipative systems, a particularly clear picture is obtained of the 
origin of the irreversibility observed in their macroscopic behaviour. The 
projector 77, effecting the subdivision of the superspace into the subspaces 
which are the respective seats of the macroscopic and atomic evolution of 
the system, is invariant for time-reversal: this subdivision applies indeed to 
all systems, whether or not they are dissipative. The time evolution operator 
27(Z) in the asymptotic subspace is also time-reversal invariant; its form (48), 
if we use the spectral decomposition \ Â dP(A) of the superoperator L, just 
amounts to a Fourier integral representation \ exp (- z77) dP(2)77 of the time­
evolution. The expressions (41) for 27(1) illustrate more explicitly how the 
asymptotic time-evolution starting from any given initial state proceeds by 
sequences of processes of “creation’’ and “destruction’’ of correlations be­
tween the elements of the system. The time direction in which one con­
siders these processes is fixed by the choice of the conditions under which
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we want to observe lhe behaviour of the system: on the information supplied 
by observation at a single instant, we normally base expectation of future 
behaviour; but the symmetry in lime of the two equivalent forms (41) of 
27(0 shows what retrodiction we can also make, on the basis of the same 
information, about the evolution of the system, on the macroscopic time­
scale, most likely to have led to its observed state: the sequences of creations 
and destructions of correlations appear inverted when, so to speak, we look 
back in time, and for dissipative systems we arrive at the well-known situa­
tion discussed by Ehrenfest in connexion with the 77-theorem.*)

*) It must be observed, in this connexion, that while both q(T) and g(t) appear as functions 
of the same time variable t, and in fact as solutions of the same Liouville equation, their time 
variations may be extremely different: @(f) exhibits variations at the rate of atomic processes, 
whereas the variations of @(f) may look quite smooth in comparison. This circumstance may be 
made quite explicit, as shown by L. Lanz, L. A. Lugiato and G. Ramella,25) at the unavoidable 
cost of formal complication: one must then renounce using the asymptotic time-displacement 
superoperator d acting at any time, but introduce a similar superoperator, whose action is only 
defined for an arbitrary finite sequence of separate instants.

The collision superoperator V7^(+ 0) does not only govern the condition 
of dissipativity ; it also clarifies, as we have seen, the role of the dynamical 
invariants. In particular, it allows us, by eq. (62), to characterize the regular 
invariants (which, at least in typical cases, coincide with the controllable 
ones). This solves one of the main riddles of Lhe kinetic theory: it was 
indeed never clear why the “collision operators” occurring in the usual 
formulations of the theory, such as the Boltzmann operator, were only in 
simple relation with the controllable invariants, independently of the possible 
existence of other invariants. At the same time, we see how decisive in this 
respect is the distinction between regular and singular invariants, - a dist­
inction which can only be made for infinite systems.

Finally, it must be stressed that the macroscopic description we arrive 
at by projection into the 77 subspace is not the “classical” one: it still con­
tains Planck’s constant wherever quantal effects occur on a macroscopic 
scale, as in the spectral distribution of electromagnetic radiation in thermal 
equilibrium, or in superconductivity and superfluidity. The laws of classical 
physics only appear as a limiting case of this macroscopic description in 
which all quantal effects are neglected, i.e. formally where h is treated as 
infinitesimal.

Nevertheless, it would be a serious logical error to imagine that the 
procedure we have been following - starting from the quantal description of 
the system, obtaining by the projection 77 its macroscopic description, and 
letting in the latter 7i tend to zero - would be a deduction of classical physics 
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from quantum mechanics. For we must not forget that the quantal descrip­
tion from which we start has to be made in terms of the very concepts of 
classical physics. All we have done, therefore, is to prove the logical con­
sistency of the rules by which a connexion is established between the mathe­
matical formalism and the classical description, upon which our account of 
macroscopic observation must ultimately rest. Obviously, there can be no 
question of any formal axiomatization of such a scheme: it must be based 
upon some set of classical concepts (e.g. space-time localization and mo- 
mentum-energy) which remain unanalysed and are treated as “primitive”. 
These concepts (and these only) must be explained by processes of measure­
ment, i.e. prescribed manipulations of specially designed apparatus, entirely 
describable in classical terms. Typically quantal concepts, on the other hand, 
like Planck’s constant or the electron spin, cannot be related directly to such 
purely classical measuring apparatus, - but the occurrence of quantal phe­
nomena at the macroscopic level allows us to establish indirect connexions, 
involving more than one classical measurement, between quantal parameters 
and classical quantities, and thereby to determine with arbitrary accuracy 
the numerical values of the quantal parameters.*)

*) Thus, Millikan’s determination of Planck’s constant from the study of the ejection of 
electrons from metallic surfaces by light of various frequencies involves essentially two meas­
urements: that of the light frequency and that of the corresponding kinetic energy of the ejected 
electrons.



4. Observation of individual atomic processes

4.1. The consistency problem of quantum mechanics

Quantum mechanics presents essentially two epistemological problems. 
The one, just recalled, concerns the consistency of the rules of interpretation 
by which the formalism is brought into relation with macroscopic observa­
tion, the other the relations of complementarity between different conditions 
of observation. There is nothing to add to Bohr’s analysis of these relations, 
and we shall therefore confine ourselves to a comment, from the point of 
view developed in this paper, of the consistency problem. Briefly restated, 
this problem arises from the fact that the basic concepts used in the formula­
tion of the laws governing individual atomic processes necessarily belong to 
the classical modes of description of direct macroscopic observation, which 
it is the aim of atomic theory to relate to the very laws of atomic behaviour. 
This means, as mentioned above, that these basic concepts must be regarded, 
from a strictly logical point of view, as “primitive”. However, there is nothing 
to prevent us from describing on the atomic scale the process of measure­
ment by which a value of the physical quantity denoted by any of these 
concepts is ascribed to an atomic system, as a dynamical process involving 
interactions between the atomic system observed and all the atomic consti­
tuents of the measuring apparatus, and obeying the laws of quantum mecha­
nics. Such an analysis will only lead to the same conclusion as that resulting 
from the direct application of the rules of interpretation of the formalism if 
these rules are consistent. A test of this consistency is especially desirable with 
respect to the rule usually designated as the “reduction” of the wave function 
representing the initial state of the observed atomic system, i.e. its replace­
ment after the measurement by another wave function expressing the infor­
mation obtained by this observation. Although such a rule is obviously 
consonant with the statistical form of causality inherent in quantum mecha­
nics, its relation with the dynamical process of measurement can only be 
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elucidated by a careful consideration of the specific function of the measuring 
apparatus and its implications for the course of the measuring process.

The decisive step was made by N. Bohr,1* who pointed out that any 
measurement is essentially the codified registration of some characteristic 
signal arising from the interaction between the observed atomic system and 
a suitable recording device of macroscopic dimensions. Indeed, he em­
phasized that the very definition of a phenomenon must contain a specifica­
tion of the experimental conditions under which it is observed, including the 
apparatus recording some kind of permanent mark allowing us to identify 
the process observed. Until the process has not been terminated by the 
registration of its permanent record, we have no basis for the use of the 
classical concepts corresponding to such record, and accordingly no possibil­
ity of giving any well-defined account of the process. In other words, it is 
precisely the recording by the apparatus which establishes the necessary link 
between the behaviour of an atomic system and its description in terms of 
concepts referring to our possibilities of observing it. Now, it is clear that 
the formation of a permanent mark on a recording device is an irreversible 
macroscopic process, retaining no other trace of the original state of the 
atomic system than the specific feature corresponding to the construction of 
the apparatus; this information modifies the conditions of observation upon 
which statistical predictions about the behaviour of the atomic system must 
henceforth be based, and it is precisely this modification which is expressed 
in the formal language of the theory by the assignment to the atomic system, 
according to the rule of “reduction”, of a new wave-function, appropriate 
to the new conditions of observation.

Once it is realized that the wave-function of the atomic system after the 
measurement is a component factor in an expression representing the asymp­
totic state of the whole system including the measuring apparatus, it can 
hardly be doubted that it will have the form prescribed by the reduction 
rule, since the latter precisely corresponds to this asymptotic situation. As 
already mentioned, we are only concerned with the consistency of the use 
of the small set of classical concepts we have called “primitive”. In quantum 
mechanics, these are the complementary sets defining space-time localization 
and momentum-energy exchange; the completion of the above argument in 
this case only requires, as Bonn showed, the consideration of simple disposi­
tions of fixed or moving diaphragms. It is sufficient to discuss these, as he 
did, by the methods of classical optics, since the latter use an idealized re­
presentation of diaphragms which directly accounts for the irreversible modi­
fication of a wave pattern arising from its interaction with such material 
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bodies.*)  In this connexion, it must be remembered that, although the appa­
ratus fixing the conditions of observation, like any other macroscopic bodies, 
may in principle be described as large quantal systems, they must be kept 
outside such a description in order to fulfil their special function (otherwise, 
they would become themselves objects of observation); it is for this deep­
lying reason that their intervention is represented in the formalism of quan­
tum mechanics by parameters denoting “external” forces and prescriptions 
for the selection of appropriate solutions of the fundamental equations — 
among them the reduction rule. Disregard of this circumstance is the most 
frequent source of misunderstanding concerning the foundations of quantum 
mechanics.

*) Somewhat less elementary is the case of quantum electrodynamics, owing to the necessity 
of taking account of all retardation effects in the measurement of a field component; in this 
case also, the consistency of the formalism could be established by a detailed analysis,2) in which 
advantage was taken of the smallness of the coupling between electro-magnetic fields and distribu­
tions of electric charge and current.

**) More recently, they have given some consideration to the problem from the point of 
view of their own kinetic theory, but made no attempt at a detailed examination of the issues 
involved.26)

The general theory of large quantal systems obviously offers another 
possibility of dealing with the consistency problem: one has only to apply 
this theory to the system formed by the atomic system under observation 
and the measuring apparatus described as a large assembly of atoms. This 
was done by the Italian physicists4) on the basis of the form of quantal er­
godic theory they had previously developed:8) **)  their result is, of course, 
in full harmony with Bonn’s argument.5) The kinetic approach outlined in 
the preceding sections allows us to discuss the issue in a more direct and 
simpler manner and to throw further light on the role of the measuring 
process in the epistemological analysis of physical theory.

4.2. Discussion of the measuring process

In order to analyse the course of a measuring process, we may use the 
schematization discussed in detail in ref.5). The main point is to arrive at a 
sufficiently simple and general formulation of the restrictions that have to be 
imposed upon the structure and dynamical behaviour of a macroscopic body 
in order that it may fulfil its function of measuring a specific property of a 
given atomic system. Its mode of interaction with the atomic system must be 
such as to bring it into a state observable at the macroscopic level and uni­
quely related (at least approximately) to the specific atomic state of interest. 
Without loss of generality, we avoid unessential complications by assuming 
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that the interaction between the atomic system and the measuring apparatus 
only lasts for a time short enough to allow us to disregard any dynamical 
change of the atomic system as a result of this interaction. The apparatus, 
on the other hand, reaches, at the termination of the interaction, a dynamical 
state which must be such as to fix the ultimate outcome of the measurement. 
For from the moment the interaction ceases, the two parts of the total system 
evolve independently, and we expect the apparatus to settle down, at the ma­
croscopic level of observation, into a situation providing a “permanent” re­
cord*)  of its specific interaction with the atomic system. This requirement 
imposes essential restrictions upon the constitution of the measuring appa­
ratus and upon the interactions of its constituent elements with the atomic 
system under investigation. If the aim of the measurement is to ascertain 
whether the atomic system is in an eigenstate \(ps) of the operator representing 
some physical quantity attached to the system, there must exist a complete 
orthogonal basis |s/n> of dynamical states of the measuring apparatus such 
that (i) only a definite set { |sm>} of such states (denoted by a common index 
s) interacts with the atomic system when the latter is in a definite state |ç0; 
(ii) the correlations between any two states |s/n), |s'm') are much weaker 
when they belong to different such sets (s s') than when they belong to 
the same set (s = s'). (As an example, we may think of the formation of a 
particle “track” in a bubble chamber or a photographic emulsion.**))

In order to show how these conditions ensure the desired functioning of 
the measuring device, let us examine the asymptotic time-evolution of its 
density supervector in its own superspace. We define the subspace Po by 
the projector

Po = 2 po(s), P0(s) = 2 PSm^Psm,
s in

and, accordingly, the correlation subspace by the projector

Pc = 2Pc{SS'\ Pc(ss'} = 2' Psm^Ps'm',
ss' mm'

the summation 2' extending over all values of m and in if s =£ s' and all 
different values of in and in if s = s'. The superoperator yy(f) given by 
eq. (21) and the asymptotic superoperators 0, r] derived from it by eqs. (20)

*) By “permanent” we do not imply that the state in question is one of actual thermodyna­
mic equilibrium, but only that it lasts long enough for macroscopic observation.

**) The interaction of a particle with the medium gives rise at a certain point (corresponding 
to a state |ç>s)in which the particle has a definite “position”) to a local fluctuation (represented 
by the set ( |sm)}) around which a bubble or a spot develops (leading to the asymptotic density 
ps(M)(/) defined on p. 37). The condition (ii) expresses the requirement that the successive bubbles 
or spots formed by the passage of the particle through the medium be sufficiently distinct from 
each other for a recording of the corresponding positions of the particle. 
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will essentially effect transitions from any subspace P0(s) to the same sub­
space: for other transitions, on account of the condition (ii) above, will be 
much less probable. Moreover, if we consider the mutually orthogonal sub­
spaces defined by the projectors 7J(ss > = P^ôss, + P^ss \ the leading terms of the 
superoperators of destruction and creation of correlations will be those lin­
king any subspace P(ss> with itself (i.e. the subspace P0(s) with the correlation 
subspace Pc(ss)); next in importance will be the links between subspaces 
p(ss ) anj piss ) for values of s' and s" in a small interval around s. Therefore, 
if we start from any initial density supervector of the measuring appara­
tus, and only retain the leading terms, the asymptotic time-evolution of ils 
projection P^ss > will take the form

- «ss.ê’M,(0: (66)

this formula expresses a clear-cut asymptotic trend of the measuring system 
towards definite states uniquely associated with the eigenstates
which are the objects of the measurement.*)

After this preparation, the discussion of the measuring process is readily 
performed. Let the initial state of the atomic system be represented by a 
superposition cs\(ps) of the eigenstates the resulting density super­
vector

exhibits the correlation between the states arising from definite phase 
relations between the coefficients cs, c*,.  The initial form of the density 
supervector of the total system formed by the atomic system and the appara­
tus (i.e., let us recall it, the form this supervector takes immediately after 
the two constituents of the total system have interacted) is easily set up in 
conformity with our condition (i) : to each component there corresponds 
a component of the apparatus density supervector. The total density
supervector is thus initially

*) It should be stressed that the approximation (66) is sufficient for the analysis of the 
most general measuring process of physical interest. The case envisaged by Wigner’s theorem27), 
in which the system formed by the atomic object and the measuring apparatus has an additive 
invariant, only occurs if the quantity to be measured is precisely such an invariant, or 
commutes with it, and an idealization of the type (66) is then in accordance with the 
theorem. If, however, the quantity to be measured does not commute with the additive invar­
iants, Wigner’s theorem has no relevance, for it is an obvious physical requirement that any 
sueh invariance should be destroyed by coupling the apparatus to a suitable external system 
of infinite extension. For instance, while a momentum measurement of infinite accuracy may 
be performed by means of an elastic collision of the atomic object with a freely moving test-body, 
the spatial localization of the object requires the test-body to be rigidly attached to some body 
of infinite mass serving as a spatial system of reference. It is worth pointing out how well adapted 
the n -space representation is to a concise and general account of the process of measurement.



38 Nr. 12

z ri? • 
SS'

and each factor evolves independently in its own superspace: the time­
evolution of the atomic system is governed by its Liouville superoperator 
T(s>(0 = exp { - iL^t}; as to the apparatus, we are interested in its evolution 
at the macroscopic level, described in its asymptotic subspace by the super­
operator 27(0. Adopting the idealized situation expressed by eq. (66), we 
therefore obtain at time t the total density supervector

2 eS' ■ Ssm(O- 
s

From this expression a density supervector making explicit reference only 
to the atomic system may be derived by averaging it over the apparatus 
superspace, i.e. by taking its trace with respect to the apparatus basis; we 
may simply ascribe the same limiting value to all the tr ps(M)(0 and normalize 
it to unity:

lim tr j>s(M)(0 = 1 •

This gives us for the density supervector of the atomic system, after a time 
sufficient for the recording of a permanent mark on the apparatus, the 
expression

2lcs(0l2l9’s><9?*l ’ (67)s
from which every explicit reference to the apparatus has disappeared, and 
whose form agrees with the prescription of the reduction rule.

The way in which this result has been derived makes its meaning quite 
clear. In the first place, it is essentially an asymptotic result, and there is 
no question of its contradicting any consequence of the time-dependent 
Schrödinger equation. Secondly, the only interactions involved in the whole 
process are the specific interaction of short duration between the atomic 
system and the apparatus and the long sequence of interactions it triggers 
off between the constituent atoms of the apparatus; there is no question 
whatsoever of any non-physical intervention of any kind upon the atomic 
system: the whole measuring process is a purely automatic registering opera­
tion, obeying only the laws of quantum mechanics, and its outcome is accord­
ingly in full harmony with these laws. Let us here emphasize again that the 
treatment of the measuring apparatus as a quantal system we have performed 
has no other purpose than exhibiting the consistency of the conceptual frame­
work of quantum mechanics, in which formalism and rules of interpretation 
in terms of classical concepts form an inseparable whole. Thirdly, the differ­
ence between the “reduced” density (67) and that of the system before the 
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measurement simply reflects the change in our information about the system 
brought about by this measurement; the occurrence of such a difference is 
no peculiarity of quantum mechanics (though the particular form it takes 
is of course a specifically quantal one) — it is common to all statistical situa­
tions and in fact an essential component of the concept of probability.

4.3. The role of the observer

Statistical causality has often been misrepresented as implying the intru­
sion of a “subjective” element into the description of the phenomena; this 
epistemological error (which was not made by the founders of the theory of 
probabilities) arises from an insufficient analysis of the conditions under 
which knowledge of the phenomena is obtained. The inclusion of a specifica­
tion of the conditions of observation into the account of the phenomena is 
no arbitrary decision, but, as we have insistently stressed, a necessity imposed 
by the very laws governing the course of these phenomena and the mechan­
ism of their observation, and thereby an indispensable part of their objective 
description, since it ensures that such a description will be common to all 
observers placed in the specified conditions. It is in order to make this object­
ivity quite apparent that we have analysed, in the preceding subsection, the 
observation process as a purely physical one, limited to the automatic re­
gistration of a record, which need not even be read.

Obviously, such an analysis touches only one side of the process of 
acquisition of objective knowledge. This process is not complete until a 
reading of the record has actually occurred, i.e. until the information it con­
tains has been stocked into the brain of some observer. This “psychological” 
side of the cognitive process is obviously just as objective as the other, since 
it is the same for any conceivable observer, but the question arises whether 
it can legitimately be separated as sharply as we have done from the purely 
physical registration process. It would seem that our understanding of the 
fundamental biological processes has now reached a stage allowing us to 
give a definite answer to this question.

We must above all realize that there is a large class of physical and 
chemical dissipative processes, occurring far from the thermodynamic equi­
librium conditions, which present structural inhomogeneities quite foreign 
to the familiar physical phenomena observed at or near equilibrium, but 
analogous to typical features of biological systems.28’ 29) It has been shown, 
for example, that chemical reactions essential for the metabolism of living 
systems, as well as for the regulation of genetic and evolutionary processes, 
can be treated in detail in terms of usual chemical kinetics, and involve 
branches of the solution of the non-linear kinetic equations which do not 
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belong to the classical thermodynamic description of near-equilibrium situa­
tions, but only appear under conditions far from equilibrium.30’ 31> Now, 
thermodynamics, both in its classical and its more general form just men­
tioned, is a mode of description adapted to the behaviour of macroscopic 
systems in the asymptotic 77 subspace; indeed, it has been explicitly estab­
lished32) that the thermodynamic description can be derived from the kinetic 
equation associated with the time-evolution operator 27(7). It is natural to 
conclude from these considerations that the distinction between “living” and 
“non-living” systems appears to be part of their description in 77-space, and 
accordingly cannot be based on any quantal description on the atomic scale. 
An analogy which may perhaps clarify the significance of this remark is the 
distinction between laminar and turbulent motion, which correspond to two 
types of solution of the Navier-Stokes equation: as this equation belongs to 
the macroscopic level — it is a consequence of the kinetic equation — we can­
not characterize the difference between these two types of flow by means of the 
formalism of quantum mechanics. Likewise, it would seem that the charac­
teristics of “life” cannot be formulated at the atomic level but are essentially 
macroscopic. Incidentally, this circumstance is sufficient to dismiss all “para­
doxical” situations (such as the famous example ascribed to Schrödinger) 
which one would allegedly encounter when attempting to treat living systems 
by the methods of quantum mechanics. In such cases, just as in the general 
problem of observation, a correct epistemological analysis can only be 
developed at the macroscopic level of description.

If we accept this general inference from our present knowledge of biology, 
we do not see any special role to be attributed to a “living” observer in the 
discussion of the consistency problem of quantum mechanics: the only con­
dition the intervention of such an observer has to fulfil is to be amenable 
to physical description at the macroscopic level. Now, we may confidently 
assume that the sense organs of an animal register signals from the physical 
environment in essentially the same way as material apparatus, and that 
the storage of these signals and their incorporation into sensory-motor schemes 
is also the result of physical and chemical processes of the type commonly 
observed in biology.*)  Since all the organs involved are of macroscopic order 
of magnitude, their activity can in principle be entirely described in the 
asymptotic subspace 77 of the appropriate superspace, like the functioning 
of any physical measuring apparatus.

*) Of great interest in this respect is the experimental evidence showing that the memory 
of a specific sensory-motor scheme can be stored in the form of a coded macromolecule.



5. General conclusion

Perhaps the most significant general result of our approach is the intro­
duction of generalized projection superoperators, made possible through the 
consideration of superspace. This generalization involves the concept of time­
reversal invariance which replaces the usual one of self-adjointness, to 
which it reduces in the absence of dissipation. These new projectors allow 
us to give a precise characterization of the macroscopic level of description 
of general quantal systems, and to formulate quantitatively the conditions 
under which a given system will exhibit the properties belonging to this level: 
a formulation obviously susceptible to experimental test (for example, we 
may verify whether a system is in thermodynamical equilibrium). These 
questions actually amount to an extension of the scope of quantum mechan­
ics, which has only been outlined in this paper and deserves a more detailed 
treatment. In a sense, the question of the definition of a macroscopic level 
of quantum mechanics may be considered as a simple illustration of this 
general method, which applies as well to a large class of other problems.
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Appendix

Matrix representation in superspace

Although we have not made use in the text of any explicit matrix repre­
sentation of supervectors and superoperators, such a representation might 
be helpful in concrete applications. We therefore collect in this appendix 
simple practical rules for writing down such matrix components.

A supervector A is represented by its matrix elements in the form

where

2 m' 2 I > ^mm'
mm' mm'

p , = n/| P+ > — P >mm I / \111 -1 mm -1 m m

In this notation, any superoperator 0 is a sum of factorizable superoperators:

0-20
mm'

mm',nn'

nn'

p xP , -1 mn * n m ’

and with the adopted order of the indices one has

= 2 0mm',nn' <n\A\n>, 
nn'

(OQ)mm',nn' mm' ,pp’

The components of the adjoint superoperator are

0* ,nn,mm

and the transposition gives

t
mm‘,nn

The adjoint symmetry of the superoperator 0 implies the relations

0 , , = 0*  >Jmm\nn -'m m,n n
between its components.

Indleveret til Selskabet den 5. oktober 1971.
Færdig fra trykkeriet den 14. september 1972.


